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Abstract. The low accuracy rates of text-shape dividers for digital ink diagrams 
are hindering their use in real world applications. While recognition of 
handwriting is well advanced and there have been many recognition approaches 
proposed for hand drawn sketches, there has been less attention on the division 
of text and drawing. The choice of features and algorithms is critical to the 
success of the recognition, yet heuristics currently form the basis of selection. 
We propose the use of data mining techniques to automate the process of 
building text-shape recognizers. This systematic approach identifies the 
algorithms best suited to the specific problem and generates the trained 
recognizer. We have generated dividers using data mining and training with 
diagrams from three domains. The evaluation of our new recognizer on realistic 
diagrams from two different domains, against two other recognizers shows it to 
be more successful at dividing shapes and text with 95.2% of strokes correctly 
classified compared with 86.9% and 83.3% for the two others.  

Keywords: Sketch tools, recognition algorithms, sketch recognition, pen-based 
interfaces. 

1 Introduction 

Hand drawn pen and paper sketches are commonplace for capturing early phase 
designs and diagrams. Pen and paper offers an unconstrained space suitable for quick 
construction and allow for ambiguity. With recent advances in hardware such as 
Tablet PC’s, computer based sketch tools offer a similar pen-based interaction 
experience. In addition, these computer based tools can benefit from the ease of 
digital storage, transmission and archiving. Recognition of sketches can add even 
greater value to these tools. The ability to automatically identify elements in a sketch 
allows us to support tasks such as intelligent editing, execution, conversion and 
animation of the sketches. 
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    a) Directed graph                      b) Organization chart                         c) User interface 
Fig. 1. Example sketched diagrams for training set 

A number of sketch tools have been developed, however they are yet to achieve 
general acceptance. One of the outstanding challenges is considerably more accurate 
recognition. Recognition rates from laboratory experiments are typically in the range 
of 98% to 99% and above [1-3]. However, rates achieved in less controlled 
conditions, where data is not limited to produce optimal performance, are usually 
much lower, for example accuracy rates between 84% and 93% are reported in [3-6]. 
Furthermore, many of these tools are limited as they are not able to distinguish 
between drawing elements (shapes) and text strokes in a sketch [1-3]. Most natural 
diagrams consist of both writing and drawing as shown in figure 1. 

While recognition of handwriting is well advanced and there have been many 
recognition approaches proposed for hand drawn sketches, there has been less 
attention on the division of text and drawing. People can comprehend writing and 
drawing seamlessly, yet there is a clear semantic divide that suggests, from a 
computational perspective, it is sensible to deal with them separately. Several 
recognizers [7-9], commonly referred to as dividers, have been proposed for this 
purpose, but recognition rates in realistic situations are still unacceptable. Limited 
investigation of machine learning for text-shape division has been found to be 
effective [8]. This work extends [8] by drawing on a larger set of ink features and 
using a range of data mining techniques systematically selected and tuned. 

2 Background 

Two particular applications of dividers are freehand note-taking and hand drawn 
diagrams. The research on sketched diagram recognition includes dividers but has 
also addressed recognition of basic shapes and spatial relationships between diagram 
components. This project has drawn on the work from both applications of dividers. 

The majority of recognizers rely on information provided by various measurements 
of the digital ink strokes (digital ink is represented as a vector of x, y points, each 
point has a time and possible pressure attribute) [1, 2, 10], as well as specific 
algorithms to combine and select the appropriate features.  

In the area of sketched diagram recognition many systems focus only on shapes [1-
3]. There have been some attempts at incorporating text-shape division in domain 
specific recognizers [11, 12] and domain independent diagramming tools [10, 13]. 
These systems are predominantly rule-based, using stroke features chosen 
heuristically to distinguish between text and shapes. 
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Research in the area of digital ink document analysis for freehand note-taking has 
explored text-shape division [14-19]. However as the content of documents is mainly 
text these methods hold some bias which make them unsuitable for sketched 
diagrams. In addition, as Bhat and Hammond [7] point out, some of these methods 
would have difficulty with text interspersed within a diagram. There has also been 
some work separating Japanese characters from shapes in documents [18, 20]. 

Three reports specifically on dividers are [7-9]. Bishop et al [8] use local stroke 
features and  spatial and temporal context within an HMM to distinguish between text 
and shape strokes. They found that using local features and temporal context was 
successful. They report classification rates from 86.4% to 97.0% for three classifier 
model variations.  

In our previous work [9] we developed a domain independent divider for shapes 
and text based on statistical analysis of 46 stroke features. A decision tree was built 
identifying eight features as significant for distinguishing between shapes and text. 
The results on a test set showed an accuracy of 78.6% for text and 57.9% for shapes. 
Part of the test set was composed of musical notes which had a significant effect on 
this low classification rate. However, when evaluated against the Microsoft and 
InkKit dividers, it was able to correctly classify more strokes overall for the test set.  

A more recent development in this field is the use of a feature called entropy [7] to 
distinguish between shapes and text. First strokes are grouped into shapes and 
words/letters and then stroke points are re-sampled for smoothing. The angle between 
every point and its adjacent points in the stroke group is calculated. Each angle from 
the stroke group is matched to a dictionary containing a different alphabet symbol to 
represent a range of angles. This results in a text string representation of each stroke 
group. Using Shannon’s entropy formula (as cited by Bhat et al [7]) they sum up the 
probabilities of each letter in the string to find the entropy of that group. This value of 
entropy is higher for text than shapes as text is more “information dense” than shapes. 
They report that 92.06% of data which it had training examples for were correctly 
classified. For data the divider had not been trained on it had an accuracy of 96.42%, 
however only 71.06% of data was able to be classified. We have re-implemented this 
algorithm for our evaluation. As our evaluation will show, this divider has been 
trained and tested on limited data and constrained conditions and does not perform at 
the reported rate of 92.06% on realistic diagrams. 

The choice of features and algorithms is critical to the success of the recognition, 
yet heuristics currently form the basis of selection. Given that features provide such 
value as input to recognition algorithms, a feature set should be chosen carefully 
using statistical or data mining techniques. While others have used some data mining 
techniques [8, 15] to the best of our knowledge no one has done a comprehensive 
analysis of algorithms. We present below a comprehensive comparative study of 
features and algorithms to select the most accurate model. In particular we are looking 
at the problem of distinguishing between text and shapes as a first step to recognizing 
sketched diagrams; a fundamental problem required to preserve a non-modal user 
interface similar to pen and paper.  
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3 Our Approach 

In order to use data mining techniques to build classifiers we first compiled a 
comprehensive feature library which is used in conjunction with our training set of 
diagrams to generate a training dataset. We investigated a wide range of data mining 
algorithms before focusing on seven that were producing the most promising results. 
These seven algorithms and the training dataset were used to build new dividers. 

3.1 Features 

Our previous feature set [9] of 46 features has been extended to a more 
comprehensive library of 115 stroke features for sketch recognition. It has been 
assembled from previous work in sketch recognition, includes some of our own 
additions, Entropy [7], and our previous divider [9]. Our previous divider is used for 
several features: pre-classification of the current stroke, pre-classification of strokes 
close by (for spatial context), and pre-classification of successive strokes (for 
temporal context). 

Many researchers have developed features that measure similar attributes. In order 
to give the reader some sense of the types of features we have categorized the feature 
library into ten categories, summarized in table 1.  

This feature library is available with full implementation within DataManager [21] 
from www.cs.auckland.ac.nz/research/hci/downloads.  

Table 1. Summary of stroke feature categories. 

1. Curvature (e.g. the line above 
has a greater curvature than the 
line below). 

6. Pressure (measure the pressure applied to 
the screen when drawing a stroke. Pressure is 
dependent on the capabilities of the hardware). 

2. Density (e.g. the text has larger density of 
points than the shape). 

7. Size 

3. Direction (this is related to the 
slope of the stroke). 

8. Spatial context (with sub categories: 
curvature, density, divider results, 
intersections, location and size). 

4. Divider Results (these features 
provide the results of text/shape 
divider algorithms). 

9. Temporal context (with sub categories: 
curvature, density, divider results, length, 
location/distance and time/speed). 

5. Intersections (e.g. the diagram 
shows intersecting strokes). 

10. Time / speed (includes total, average, 
maximum and minimum times or speed). 

3.2 Dataset 

For the training set we have collected and labeled sketched diagrams from 20 
participants using DataManager [21]. Each participant has drawn three diagrams; a 
directed graph, organization chart and a user interface e.g. figure 1. There are a total 
of 7248 strokes in the training set, with 5616 text strokes and 1632 shape strokes. 
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Using this collection of diagrams we have generated a dataset of feature vectors for 
each stroke using DataManager. DataManager’s dataset generator function is able to 
take the diagrams collected and calculate feature vectors based on the implementation 
of our feature library. 

3.3 Building Classifiers 

Weka (developer version 3.7) [22], an open source data mining tool, has a large 
number of machine learning algorithms that can be used to perform our data analysis 
and build, tune and test classifier models for dividers. We found that 60 of the 
algorithms within Weka were possibly suited to the divider problem. We began our 
analysis with a preliminary investigation of all these algorithms. This involved 
building classifier models for each algorithm using the training data. Some clearly 
performed better than others while some needed tuning of their specific parameters to 
optimize their results. Upon discussion of the preliminary investigation we were able 
to narrow the search down to seven algorithms that are likely to gain the best 
classification accuracy for a divider1. 

The chosen classifiers are: Bagging [23](with an REP tree base learner), LADTree 
[24](alternating decision tree using the LogitBoost strategy), LMT [25](logistic model 
tree), LogitBoost [26](additive logistic regression with Decision Stump or REP tree 
base learner), MultilayerPerceptron [22] (neural network), RandomForest [27](forest 
of random trees) and SMO [28](support vector machine). Using the training dataset of 
feature vectors generated from the diagrams collected we built dividers by training 
each classifier. While Weka provides sensible default parameters for most algorithms, 
some classifiers required tuning to optimize their results.  

For Bagging [23] we tuned the algorithm by varying the number of bagging 
iterations that the algorithm performs. This parameter is indicative of the number of 
trees that can be produced. The default value for this in Weka is 10 iterations. We ran 
an experiment using 10-fold cross validation for Bagging with REPTree (a fast 
decision tree learner) at 10, 100, 500, 1000 and 5000 iterations. Paired t-tests (α=0.05) 
showed no significant difference in the results at each level of iterations. The highest 
result is shown in table 2, this was produced at 500 and 1000 iterations. 

To tune the LADTree [24] we varied the number of iterations of the algorithm to 
10, 100, 500 and 1000 iterations. We were unable to increase the number of iterations 
to greater than 1000 due to time and memory constraints. This algorithm takes a long 
time to train therefore we chose to run the experiment with 5-fold cross validation as 
opposed to 10-fold. Paired t-tests (α=0.05) showed that the LADTree with 500 and 
1000 iterations were significantly more accurate than the others. There was no 
significant difference between the LADTrees with 500 and 1000 iterations. The 
highest result shown in table 2 was produced at 1000 iterations. 

The default parameters in Weka for LMT [25] are sensible for this problem and did 
not require tuning. The result of 10-fold cross validation using our training dataset on 
LMT with default parameters is shown in table 2. 

To begin tuning LogitBoost [26] we ran a preliminary 10-fold cross validation 
experiment to see if there were any significant differences in using Decision Stump or 
                                                            
1 Thanks to Eibe Frank for his advice on the selection of algorithms. 
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REPTree as a base classifier for LogitBoost. A paired t-test (α=0.05) showed no 
significant difference between the two at 120 iterations of the algorithm. Based on 
these results we decided to continue to investigate both trees as base classifiers.  

To further tune LogitBoost we varied the number of iterations the algorithm 
performs and also the shrinkage parameter. Shrinkage is a parameter that can be tuned 
to avoid overfitting the LogitBoost model to the training dataset. When a classifier is 
overfitted it reduces the likelihood of the model retaining the same level of accuracy, 
achieved with training data, on a new test dataset. Small values for shrinkage reduce 
overfitting. We ran experiments using 10-fold cross validation for LogitBoost with 
the following options: base classifier as a Decision Stump or REPTree; number of 
iterations at 10, 100, 500, 1000 or 5000; shrinkage at 1.0 (Weka default value) or 0.1. 

Using all combinations of the above options resulted in 20 models for LogitBoost, 
10 for each base classifier. For LogitBoost, the model that had the highest level of 
accuracy was with a Decision Stump base classifier, 5000 iterations and a shrinkage 
value of 0.1, the result for this model is shown in table 2. Paired t-tests (α=0.05) 
showed that it was significantly better than all other Decision Stump models except 
two that were not significantly different; they had a shrinkage value of 1.0 and 
number of iterations set at 1000 and 5000. When compared with the REPTree models, 
it was only significantly better than the REPTree model with 10 iterations at a 

shrinkage value of 0.1, for all 
others there was no significant 
difference. 

The default parameters in Weka 
for MultilayerPerceptron [22] are 
sensible for this problem and did 
not require tuning. The result of 
10-fold cross validation using the 
training dataset on 
MultilayerPerceptron with default 
parameters is shown in table 2. 

To tune RandomForest [27] we 
varied the number of iterations of 
the algorithm to 10, 100, 500 and 
1000 iterations. We were unable to 
increase the number of iterations to 

greater than 1000 due to memory constraints. Paired t-tests (α=0.05) showed no 
significant difference between any of the models. The highest result shown in table 2 
was produced at 500 iterations. 

SMO [28] is a more complicated classifier to tune. There are two parameters that 
can be tuned; the complexity value of SMO and the gamma value of the RBF kernel 
used by SMO. To find the best model we used the GridSearch function in Weka 
which allows you to optimize two parameters of an algorithm by setting a maximum, 
minimum, base value and step value for how much a parameter can increase by for 
each test. One of the main advantages of GridSearch is that the parameters of interest 
do not have to be first level parameters, for example gamma is not a first level 
parameter as it is a value used by the RBF kernel, where the RBF kernel is a 
parameter of SMO. We found the optimal value for complexity was 100, with a 

Table 2. Best results obtained from selected 
classifiers 

Classifier 
% Correctly classified  

(10-fold cross validation) 

LADTree 97.49* (5-fold)

LogitBoost 96.70* 

RandomForest 96.45 

SMO 96.41 

Bagging 95.67 

MultilayerPerceptron 95.02 

LMT 94.85 
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gamma value of 0.1. The results of 10-fold cross validation on SMO for our training 
data is shown in table 2. 

The best results of 10-fold cross validation (except LADTree which was 5-fold) for 
each classifier on our training set is shown in table 2. Paired t-tests (α=0.05) show that 
LogitBoost and LADTree are significantly better than the other classifiers. There is no 
significant difference between LogitBoost and LADTree. This is not surprising as 
LADTree uses the LogitBoost strategy. 

3.4 Implementation 

In order to run a comparative evaluation of our two new models against other dividers 
we integrated our models into DataManager’s Evaluator [6]. We also integrated our 
old divider [9] and implemented the Entropy divider [7].  

The Entropy divider had to be trained as no thresholds were provided by [7]. We 
trained it on the same data as our new dividers using 10-fold cross validation with the 
decision stump algorithm from Weka [22] to find an optimal threshold. We chose the 
decision stump algorithm as this generates a decision tree with one node, essentially 
producing one decision based on the Entropy feature. The 10-fold cross validation 
reported that 85.76% of the training data was correctly classified; other algorithms 
such as OneR, a rule based method, and a J48 tree (C4.5 decision tree) showed similar 
results. Our divider developed from previous work [9] was not re-trained; it was 
implemented with the same thresholds as the original decision tree. 

4 Evaluation 

In order to test the accuracy of these dividers on data that they are not trained on we 
used a new set of diagrams from different domains to the training set. The test set was 
composed of ER and process diagrams (see figure 2) collected from 33 participants 
who drew one diagram from each domain. The participants were asked to construct 
the diagrams from text descriptions so that they are realistic in individual drawing. 
There are a total of 7062 strokes in our test set which is similar in size to our training 
set. There are 4817 text strokes and 2245 shape strokes. Table 3 shows the results for 
each divider on the test set of diagrams. LADTree is the most accurate of the four 
tested with 95.2% correctly classified closely followed by LogitBoost at 95.0%. The 
Entropy divider is the least accurate at a rate of 83.3%. It is clear that entropy has a 
large bias towards text as only 50.5% of the shapes in the test set are correctly 

 
a)ER diagram    b) Process diagram 

Fig. 2. Example sketched diagrams for test set 
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classified. Our previous divider is 
slightly more accurate than Entropy; 
however its bias towards text is not 
as extreme. In fact the results show 
that all dividers classify text much 
more accurately than shapes. 
 

 

5 Discussion 

The high accuracy of the results we have obtained by using data mining techniques to 
build dividers demonstrates the effectiveness of this approach. We believe that other 
recognition problems would also benefit from a similar study of data mining 
techniques. However there is still room for improvement in these divider algorithms. 

 In terms of tuning, for all the algorithms where we varied the number of iterations 
we found that a high number of iterations usually resulted in significantly better 
results. We could tune these further by increasing the number of iterations for some 
algorithms however we are constrained by time and memory. Although, these 
constraints are for training, once the classifier is trained the memory requirements are 
minimal and actual classification time on instances is very fast in all cases. 

We can also study the common types of failures that occur with recognition, in 
particular for shapes as they are the main source of misclassification. Data mining 
these misclassified strokes could identify features that may help correctly distinguish 
them. Studying error cases may also lead to the identification of new features that 
account for these misclassified shapes. 

Feature selection strategies may also contribute to recognizer improvement. This 
involves using feature selection algorithms to isolate the features that perform well. 
When training an algorithm insignificant features can have a negative effect on the 
success of classification algorithms [22] therefore careful feature selection is a very 
important step to developing recognition techniques. We were surprised that 100+ 
features were employed by our top two dividers and speculate that some features are 
redundant or detrimental. Redundant features will only slow execution time whereas 
our concerns are with features that have a negative effect. Further exploration of 
feature selection strategies could identify features that should be excluded. 

Combining different classifiers into a voting system is also worthy of investigation. 
Classifiers predictions can be weighted according to their performance and combined 
to produce one overall classification for an instance [22]. We are yet to investigate 
whether the different algorithms have a large number of common failures. If they all 
fail on the same cases then voting is not useful. For future work we plan to investigate 
the main cause of failures that occur for the original seven algorithms and identify 
what proportions are common between them. 

We chose to train and test on diagrams of different domains to create a general 
diagram divider. Each diagram domain has its own syntax, semantics and mix of 
drawing shapes. Given the difference between the training 10-fold validation values 

Table 3. % Correctly classified for each divider. 
Divider % Correct % Text % Shapes 

LADTree 95.2 98.3 88.5 

LogitBoost 95.0 98.1 88.4 

Old Divider 86.9 93.1 73.5 

Entropy 83.3 98.7 50.5 
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and the test results (~ 2.3%), it may be worthwhile to data mine and train a divider for 
each diagram domain.  

6 Conclusion 

We have built seven new dividers using data mining techniques to distinguish 
between text and shapes in hand drawn diagrams. The two best dividers, LADTree 
and LogitBoost, are able to correctly classify 95.2% and 95.0% respectively of a test 
set that they have received no training for. A comparative evaluation of these dividers 
against two others shows that the new dividers clearly outperform the others. The 
success of our new dividers demonstrates the effectiveness of using data mining 
techniques for sketch recognition development. 
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